Impacts of agricultural management on fluxes of nitrogen and greenhouse

gases and on critical N load exceedances

Wim de Vries Hans Kros, Gerard Velthof

Contents

1 Need for integrated nitrogen research

- 2 Predicting impacts of agricultural management on N and greenhouse gas fluxes and CLN exceedance
 - INITIATOR2: model at landscape/national scale
 - INTEGRATOR- MITERRA Europe: model at European scale
- 3 Way to go forward in UNECE context

Need for integrated nitrogen research

Accelerated global N cycle

Carl BoschFritz Haber

Accelerated global N cycle

1860

mid-1990s

Nitrogen in the future

reactive nitrogen (Tg

Natural and anthropogenic creation rates of reactive nitrogen (Tg N/yr)

Riverine transport of reactive nitrogen to coastal zone (Tg N/yr)

The NinE concept and logo

Why integrated nitrogen research?

- Emissions of ammonia and green house gases to air (health and climate impacts)
- Leaching and runoff of ammonium and nitrate to ground waters and surface waters (health and aquatic ecosystem impacts)
- Impact on terrestrial ecosystems/biodiversity
- Risk for the implementation of key European policies notably on air quality/ammonia emissions (NEC), climate change (Kyoto), water quality (WFD) and biodiversity (HD, CBD).

INITIATOR2: model predicting N and GHG fluxes at landscape/national scale

Modelling approach: aim of INITIATOR2

INITIATOR2 aims to:

- Quantify/optimize effectiveness of policies aimed at reduction of all relevant element fluxes (nutrient and contaminants)
- to atmosphere, ground water and surface water.
- Relevant fluxes include:
 - Atmospheric emission of NH₃ and greenhouse gases (CO₂, CH₄, N₂O) from housing systems and terrestrial ecosystems.
 - Soil accumulation/release, leaching and runoff of C, N, P, base cations (Ca, Mg, K) and metals to ground water and surface water

Modelling approach: flowchart of INITIATOR2

Noordelijke Friese Wouden (NFW)

- Area in the Northern part of the Netherlands.
- Farmers joined in an environmental cooperative.
- Agreement with government to achieve environmental targets at landscape level.
- Targets to be reached in 5 -10 years.
- Freedom regarding measures as long as the environmental targets are attained.

Environmental ambitions NFW

- Ground- and surface water:
 - NO₃ ground water < 50 mg l⁻¹
 - N in surface water < 2.2 mg l⁻¹
 - P in surface water < 0,15 mg l⁻¹

Nature

- Emission ceiling of 2 kton NH₃-N based on NEC of 93 kton NH₃ and the present ratio of NFW vs national emissions
- Only 10% exceedance of critical N loads per nature target type; 90% protection of nature.

Emissions NH₃ and N₂O in NFW in 2004

NH₃ emission (kg NH₃-N ha-1)

N₂O emission (Kg N₂O-N ha⁻¹)

N conc. in ground and surface water in NFW in

Nitrate in groundwater

Nitrogen in surface water

Exceedance critical N loads in NFW in 2004

Effects on NH₃ and N₂O emissions and NO₃

Aspect	Present	Low protein feeding and manure spreading 35%
NH ₃ emission (kton N)	2.2	2.0
N ₂ O emission (kton N)	0.46	0.35
Exceedance NO ₃ limit (%)	5.7	2.7

Effects on the exceedance of criticalN N

	Loads Deposition N	Exceedance %
	Mol N /ha	
Present situation	1687	39.1
NH3 emission NFW = 0	1040	6.1
Low protein feeding	1556	38.2
Low protein feeding+ injection 10-12%	1495	38.8

INTEGRATOR/MITERRA Europe: model predicting N and GHG fluxes at European scale

Objectives INTEGRATOR

- Develop and apply spatially explicit detailed ecosystem models and an integrated tool for the European scale to:
 - Assess current N (NH₃, NO_x) and GHG (CO₂, N₂O, CH₄) emissions from terrestrial ecosystems and interactions between N and C and between agricultural and non-agricultural systems.
 - Predict past and future N and GHG emissions/sinks in response to various scenarios on changes in: (i) land cover and land management and (ii) climate and N deposition

Approach to multi sector model INTEGRATOR

Agricultural module: MITERRA - EUROPE

 Includes ammonia, nitrous oxide and methane emissions and nitrate leaching from housing and manure storage systems and from agricultural soils

- Steady state model: no dynamics included
- Focused on evaluation of measures to mitigate ammonia and nitrate emissions

Year 2000: ammonia

Year 2000: nitrous oxide

Ammonia measures (from RAINS)

- Low Nitrogen Fodder (dietary changes)
- Stable Adaptation by improved design and floor construction
- Covered Manure Storage
- Biofiltration (air purification)
- Low Ammonia Application of Manure
- Substitution of urea with ammonium nitrate
- Incineration of poultry manure

Selected nitrate measures from Nitrate Directive

- balanced N fertilizer application
- maximum manure N application rate
- no fertilizer and manure application in winter and wet periods
- limitation to fertilizer application on sloping grounds
- manure storage with minimum risk on runoff/seepage
- appropriate fertilizer and manure application techniques
- growing winter crops
- Buffer strips near water courses

Effect of single measures

Effect of single measures

Non agricultural model for impacts of N deposition

on GHG exchange

- An increase in nitrogen deposition leads to an enhanced :
 - Growth and thus an increased CO₂ sequestration in trees
 - Carbon input by litterfall and often a retarded decomposition and thus an increased CO₂ sequestration in soil
 - Nitrogen cycle and thereby an increased nitrification and denitrification and thus an increased N₂O emission
 - CH₄ sink by oxidation in a strongly nitrogen limited ecosystem and a reduced CH₄ sink in all other ecosystems

Nitrogen deposition and CO₂ sequestration

Comparison of net greenhouse gas budget (in CO₂ equivalents) per unit N added, European forests and Thursley Common

Way forward in UNECE context

Way forward

- Include relationships in soil (acidification) models between: (i) N deposition and C/N dynamics, (ii) C/N dynamics and N availability and biodiversity.
- Include relationships between C/N dynamics and N₂O emissions (good empirical relationships): relation N deposition and GHG exchange >> climate change.
- Include impacts of temperature on biogeochemical processes to evaluate impacts of climate change.

Accelerated global N cycle

Fertilizer production

Cause – effect relationships

<u>ESF – Research Network Programme:</u>

gen in Europe: Problems and Solut

- Running for 5 years, started March 2006
- Aims to integrate European research and researchers
- Delivering an assessment report of the state of European nitrogen, sources, transformations and impacts, as well as establishing a basis to recommend future solutions

Housing and soil emissions ammonia in 2000

Emission of nitrous oxide and methane in 2000

Scales

- Spatial:
 - 27 member countries
 - · Country level
 - Nuts 2 level
 - Nitrate Vulnerable Zones
- Temporal: yearly

Input data

FAO Fertilizer (national), yields

CAPRI Area of crops

distribution of animals over NUTS II

Animal numbers and excretion factors

Manure management systems

Soil and meteorological data

NVZ maps

N contents and crop residues

Grassland area and yields

RAINS

JRC/CAPRI

Alterra/EU

Service contract

Linkages N and climate policies and GHG

Impacts of N deposition on GHG exchange

Impacts of N deposition on GHG exchange

- Δ C sequestration = Δ N deposition x (frN_{uptake} x C/N_{stemwood} + frN_{immobilisation} x C/Nsoil)
- with frN_{uptake} = f (N deposition)
- frN_{immobilisation}= f (C/N soil ratio, NH₄/NO₃ deposition ratio)
- \triangle N2O-N emission = A + 0.018 \triangle N deposition
- with A = f (temperature, precipitation, tree species, texture, organic matter content, pH)
- \triangle CH₄ uptake = -0.0058 x CH₄ uptake (Ndep=0) $\times \triangle$ N deposition

Impacts of N deposition on GHG exchange

Green	GWP (kg CO2 equivalents/ha/yr)1		
house	Total estimates	N deposition	
gas		impacts1	
CO ₂ -C	- 2200-3300 (-2750)	-220-330 (-275)	
N_2ON	+ 140 -325 (230)	+ 20 -50 (35)	
CH ₄	- 5-70 (-40)	+ 0.1-1.1 (0.6)	