Air Pollution from Agriculture The Role of Ammonia

Mark Sutton Centre for Ecology and Hydrology (CEH), Edinburgh

Presentation to the Air Pollution Hearing European Parliament, Brussels, 11 May 2006.

The Polluters: Sources of ammonia

Values for the UK; proportions vary across Europe

Global increase in amounts of nitrogen

Ammonia in the atmosphere

Nitrogen reduces the abundance of woodland flowers

Wood sorrel (Oxalis acetosella)

Lost at the expense of:

Velvet grass (Holcus lanatus)

Effect of gaseous NH₃ on flowering of Cotton grass (*Eriorphorum vaginatum*) Ambient NH₃ 100 ug m⁻³ NH₃

Effect of ammonia on the lichen Ramalina farinacea

Healthy lichen

Lichen "suffocated" by algae

Ammonia contributes substantially to particulate matter (PM) concentrations

- Reduced visibility
- Human heath impacts

Parma, Emilia Romagna, Italy

Ammonium as a fraction of PM1.0

- Example data from Aerosol Mass Spectroscopy (AMS)
- Ammonium ~15% of total PM1.0
- Ammonium ~ 20-35% of the ionic fraction

Predicted effects across Europe

Critical load exceedance for N effects on ecosystems

Loss in life expectancy attributable to PM_{2.5}

Loss in average life expectancy in months due to identified anthropogenic $PM_{2.5}$ (for 2000)

Effect of SO₂ and NO_x emission reductions on the NH₃ contribution to acid & N deposition

% contributions to acid and N deposition for woodlands in UK

FRAME model

Percentage contribution of primary pollutants to the effects in 2020

Ammonia will become the main contributor to all three problems in 2020

What can be done for ammonia?

- Ambition for European livestock numbers needs to be agreed
- All EU Member States need to demonstrate commitment with measures to reduce ammonia emissions
- So far, the commitments have been very variable

Reducing in air pollution effects

Exceedance of N critical load by % ecosystem area

2000

2020 Current legislation 2020 . Max. feas. reductions

Multi-pollutant interactions for nitrogen

Abatement may swap one pollutant for another in the nitrogen cascade

Integrated Pollution Prevention and Control (IPPC) Directive

- Includes good practice for large pig and poultry farms ("installations")
- Excludes small "family farms" (e.g. <40,000 bird places)
- Is it really integrated? It does not treat the fate of the manure if passed to a third party.
- Good case to extend IPPC to larger cattle farms:
 - The debate should centre on the farm-size limit
 - Existing IPPC farm sizes (as NH₃ emission) would equate to including farms with ~>200 cows

Integrated Pollution Prevention and Control (IPPC) Directive

Examples of nitrogen pollutant swapping

- Drying poultry litter
 - Decrease NH_3 (& NH_4^+ PM), but can increase dust emissions
- Incorporating manures in soils
 - Decrease NH₃, but can increase NO₃⁻ leaching
- Extending the cattle grazing season
 - Decrease NH_3 , but can increase N_2O emissions
- Prioritize measures with mutual benefits e.g. reduce N inputs in fertilizers and animal feed

Ecosystem protection

National targets and policy

of the critical load

for nitrogen

Implications of fine spatial variability

- Nature areas near large farms are more at risk
- Woodland edges at high risk (the bits seen by the public)
- The excedance is so massive that there is no way that realistic national emission ceilings will avoid all impacts of NH₃ on biodiversity loss
- Need to prioritize which ecosystems to protect and develop complementary spatial strategies
- Habitats Directive sites are the natural priority for biodiversity

Spatial planning for ammonia and the Habitats Directive

- Habitats Directive network of Special Areas of Conservation (SACs). Legal requirement to maintain "Site integrity"
- Spatial approaches should be encouraged by setting an effect related objective: *"Target to reduce the numbers of SACs where N critical loads are exceeded in each Member State by X%"*
- Regional and landscape spatial measures (inc. buffer zones) give larger benefits for the same total ammonia emissions.

Landscape planning scenarios: Effect of tree-belts on nitrogen deposition

Two farms, two hypothetical SACs; 50 m belts of trees

(-2.5) - (-1)

(-1) - (-0.5)

(-0.5) - 0

(-21) - (-10)

(-10) - (-5)

(-5) - (-2.5)

Conclusions: Ammonia problems

- In 2020 ammonia the largest contributor to acidification, eutrophication and particulate matter
- Current ammonia abatement is small compared with other sectors: more effort is required.
- Given costs and spatial variability, it is not feasible to protect all European ecosystems, while maintaining a viable livestock sector.

Conclusions: Ammonia and Strategies

- Need an integrated view of the N cycle, linking agricultural NH₃, N₂O and NO₃⁻ losses (inc. acidification, eutrophication & PM).
- Better coordination of NECD, Kyoto, Nitrates Directive/WFD and CBD
- Look for synergies and set different N priorities according to local sensitivity.
- Special Areas of Conservation (SACs) are the logical priority for biodiversity protection

Conclusions: Ammonia & Measures

A suite of measures is needed:

- Further reduce national ceilings (A+ is achievable for NH_3)
- Set an effects-based objective for SAC protection
- Set an air quality objective for annual mean ammonia
- Use national & landscape planning to help meet N objectives
- Extend IPPC to include cattle (with a realistic farm size limit)
- Incorporate eligible costs of mitigation measures and spatial strategies into agri-enviroment financing mechanisms