

C2 - Manipulation Experiments

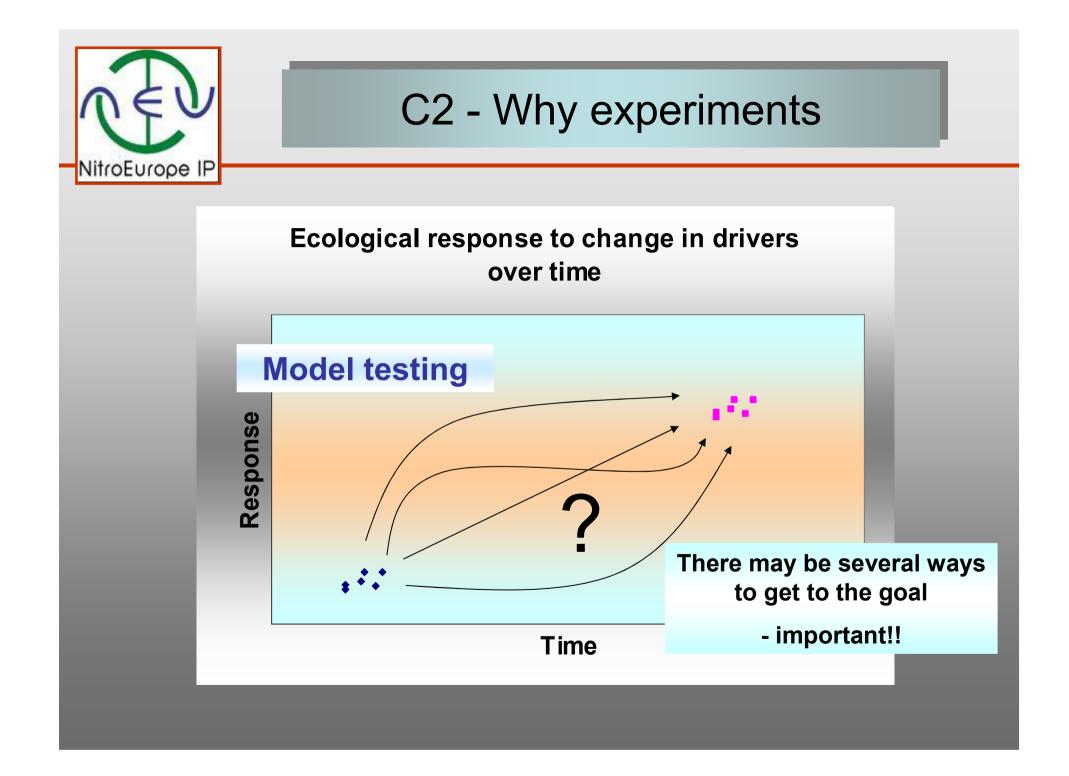
Ecosystem manipulation to understand N interactions with global change

Claus Beier Risoe National Laboratory, DK C2 coordinator

Per Gundersen, KVL, DK (Forests) Bob Rees, SAC, UK (Agriculture) Jean Francois Soussana, INRA, FR (Grasslands)

C2 - Manipulation Experiments

C1


provide fluxes of N and GHG (ecosystem types, climates and land use conditions)

C3 (plot scale modelling) + C4 and C5

model applications at various scales – to predict changes over time

What happens if drivers change?

C&N interactions, N sequestration, atmosphere-biosphere exchange of N and GHG etc. are sensitive to changes in drivers but we still know relatively little and C1 will not provide all the answers

C2 - Manipulation Experiments - aims

Quantify the impacts of changes in external drivers (global change, N deposition, management, land use change etc.) on fluxes and exchange of N, C and GHG in terrestrial ecosystems (relative change rather than absolute budgets)

Provide an improved scientific understanding of the underlying processes and their interactions at different scales (Process understanding & model improvements).

Provide data for evaluation and validation of plot scale models – processes and ecosystem scale (model validation).

C2 – Key questions

• the quantitative components of

ecosystem N budgets and how do these respond to global change? How much does the form of reactive N

(oxidized vs. reduced, wet vs. dry, agricultural application vs. atmospheric deposition) affect ecosystem response, N and C budgets and Net Greenhouse gas Exchange (NGE)?

• the effect of

changes in atmospheric N deposition and agricultural N

inputs over recent decades on the *net CO2 uptake and NGE of European ecosystems?* Can we *simulate the effects* of land-management, land-use and climate change on NGE at plot, landscape, regional and European scales?

• can independent **measurement and modelling** be used to **verify** greenhouse gas (GHG) and Nr emission inventories?

• would a more integrated management of the N-cycle and its interactions with the C-cycle have potential to reduce greenhouse gas and Nr emissions simultaneously?

C2 – Primary objectives

P01

to establish **robust datasets** of N fluxes and net greenhouse-gas exchange (NGE) in relation to C-N cycling of representative European ecosystems, as a basis to investigate interactions and assess long-term change (primarily C1 plus input from C2, C4),

PO2

to quantify by measurements the **effects of past and present global changes** (climate, atmospheric composition, land-use/land-management) on C-N cycling and NGE (primarily C2, plus input from C1),

C2 – Technical objectives

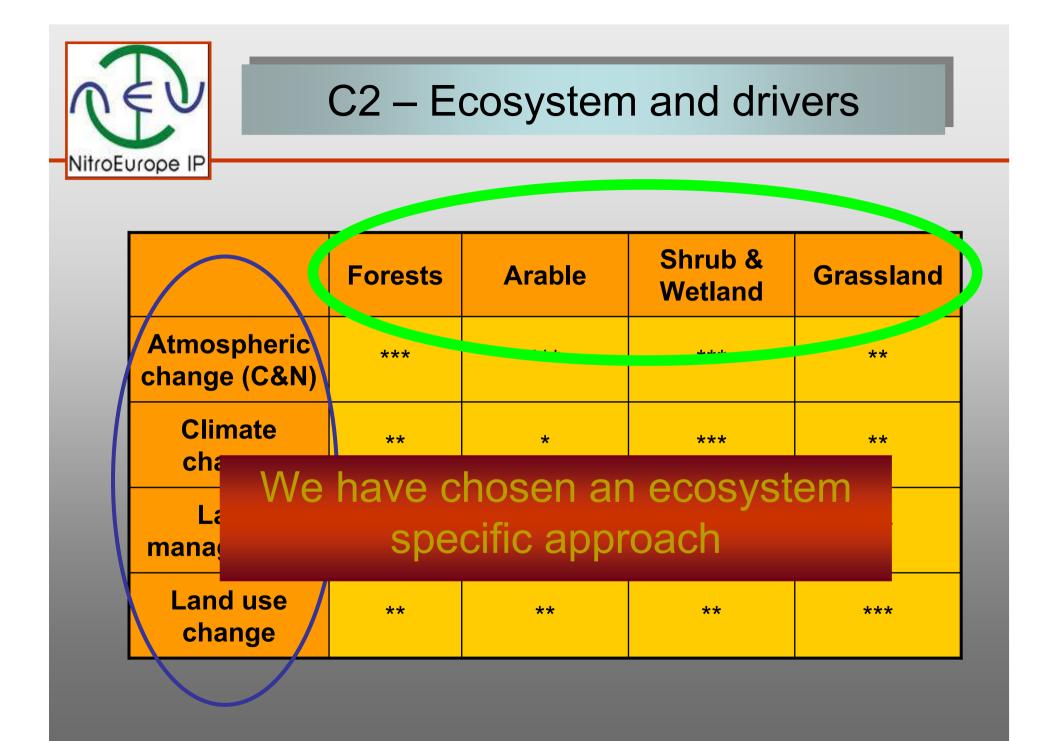
ТОЗ

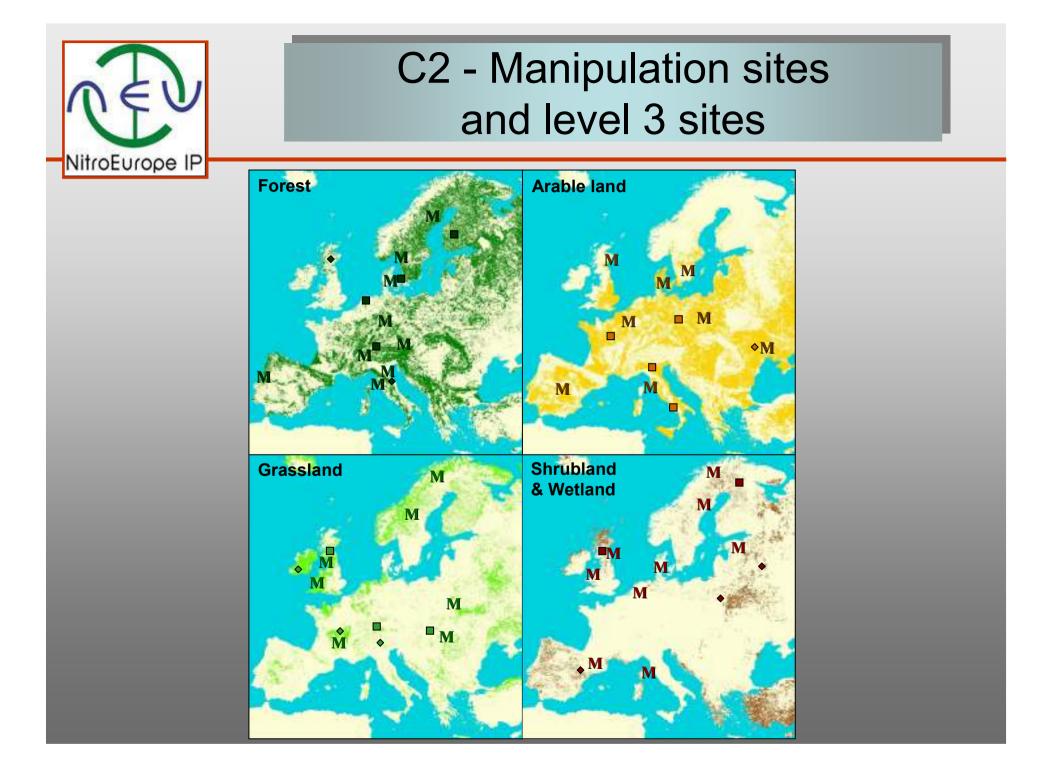
to establish and integrate a European network of ecosystem manipulation experiments (C2) related to N and NGE, building on well-established national and EU infrastructures

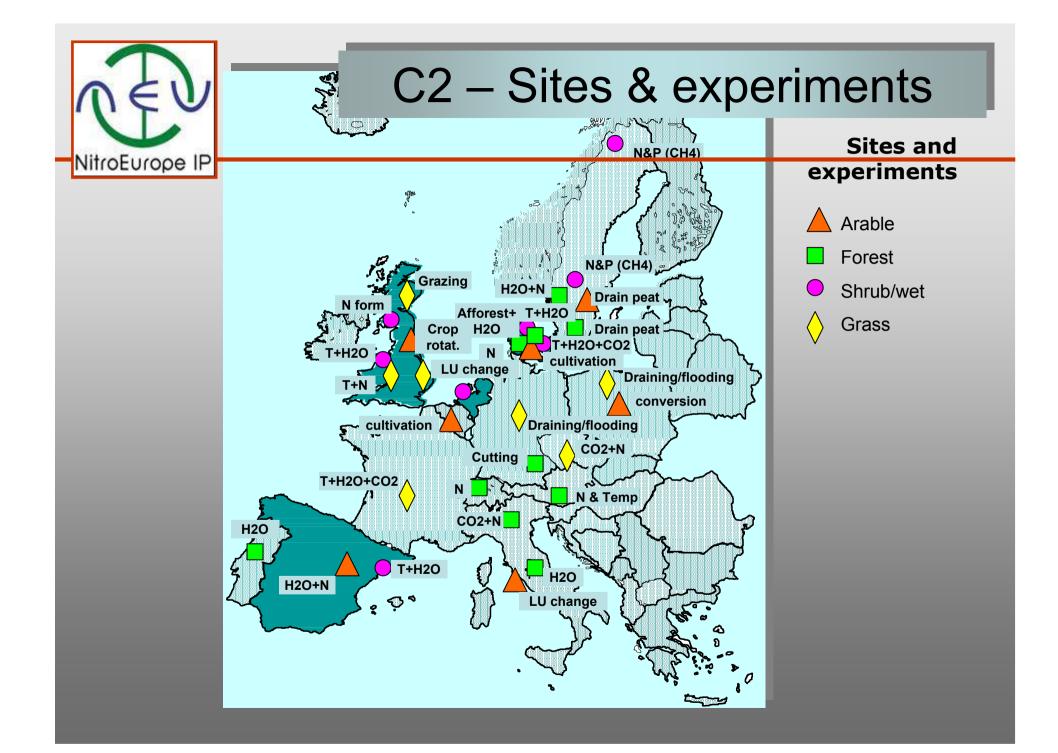
TO4

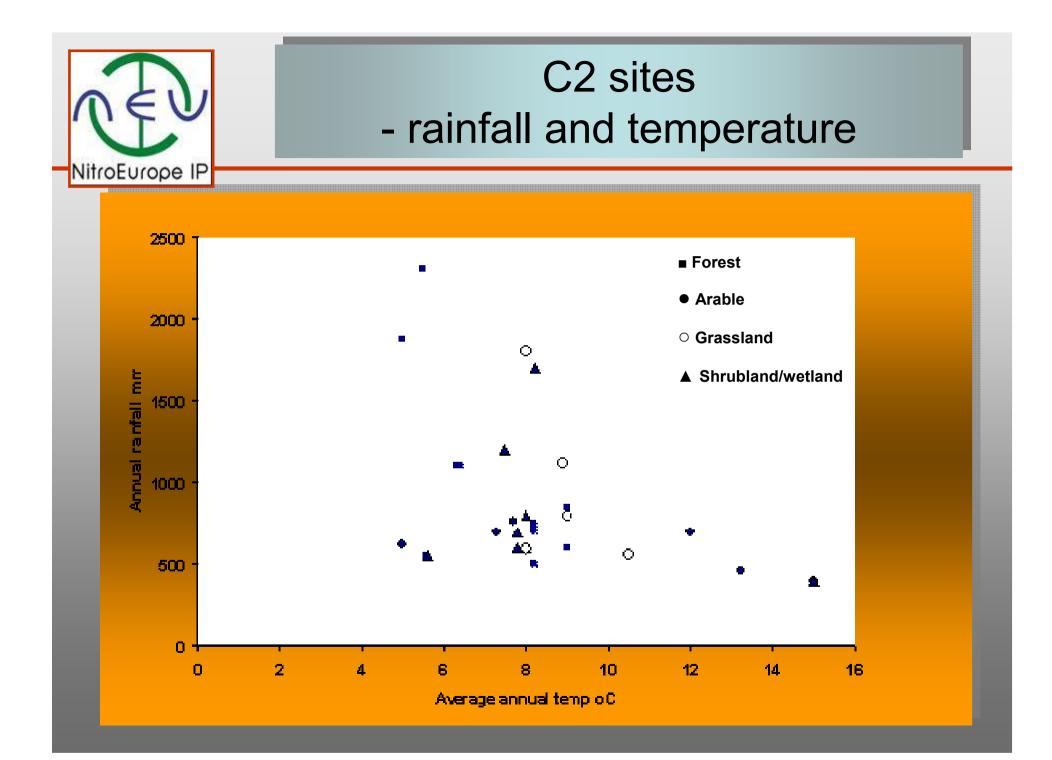
to establish common measurement protocols (C7) ensuring comparability between the flux (C1) and manipulation (C2) networks and provide essential inputs for plot-scale models (C3), and to establish common modelling protocols (C7) for quality assurance and uncertainty assessment in the different plot-, landscapeand European models (C3, C4, C5, C6),

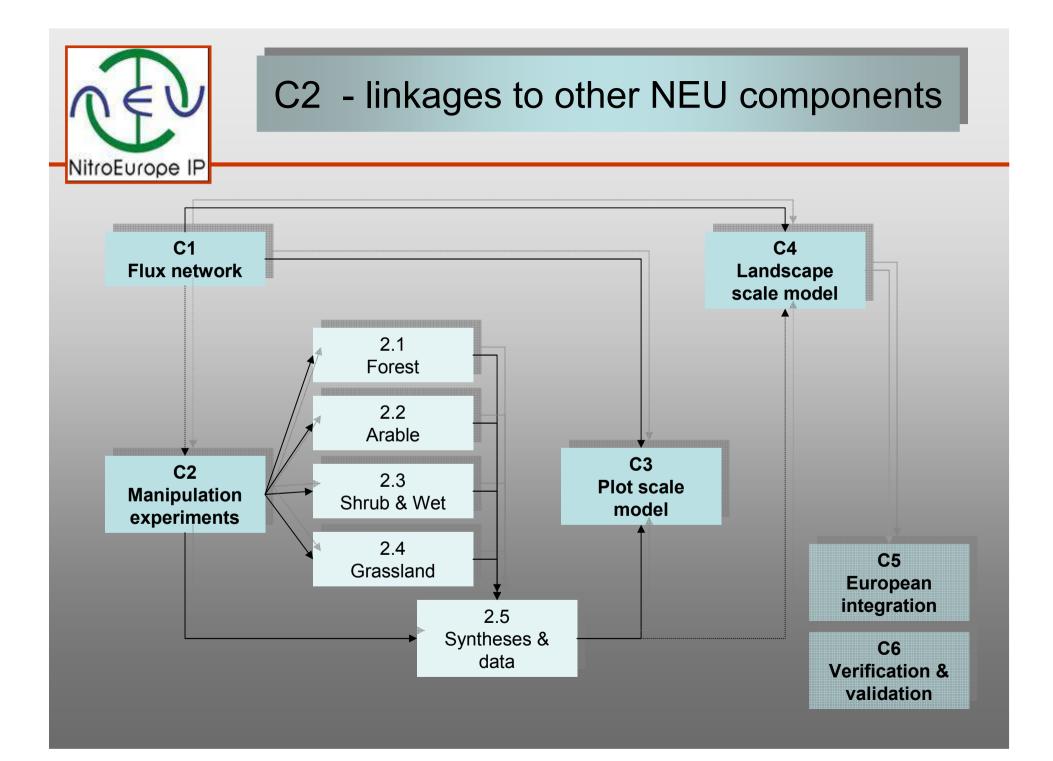
C2 - Overall strategy

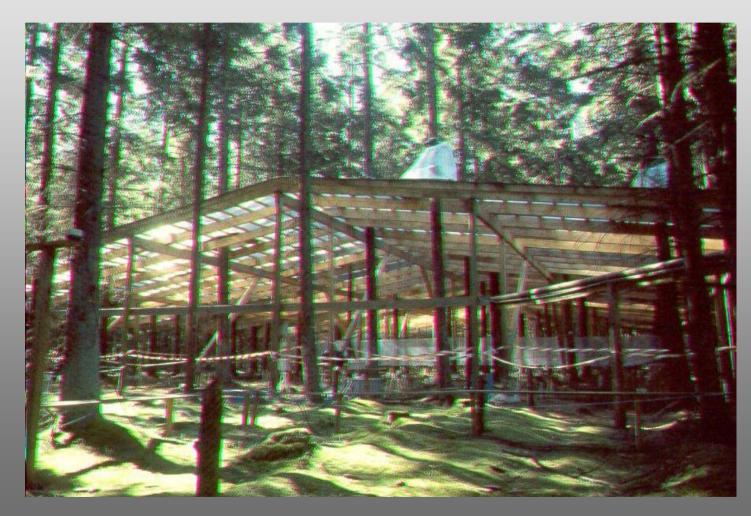

Choice among two


New experiments


C1 sites, all drivers, expensive, short term change


Existing experiments


existing knowledge and networks, long term change, relatively cheap



2.1 - Forests

Forests - knowledge gaps

- long-term impact of N deposition
- impact of climate changes
- effect of afforestation/abandonment on N rich arable land
- effect of draining/flooding in wet forest soils.

C2- Forest experiments

Site	Climate, ecosystem, soil	Treatments	Network
Klosterhede, DK	Atlantic, Conifer, podzol	N dep.	NITREX, CNTER
Klausenleopoldsdorf, AT	Continen., Decid., cambisol	N dep.	National
Gårdsjøn, SE	Atlantic, Conifer, podzol	N dep.	NITREX, CNTER
Alptal, CH	Continen., Conifer, gleysol	N dep.	NITREX
Achenkirchen, AT	Continen., Conifer, cambisol	Temperature	National
Tolfa, IT	Medit., forest, clay loam	+/- water	MIND
Herdade de Mitra, Evora, PT	Medit., Evergreen oak, lixisol	+/- water	MIND
Vestskoven DK (Chrono)	Atlantic, Decid.&conifer, sandy loam	Afforestation & water	AFFOREST
Grevindeskov, DK	Atlantic, Decid.&conifer, sandy loam	Drainage	National
Gottåsa, SE	Atlantic, Conifer, org. soil	Drainage of peatland	National
Högelwald, DE	Continen., Conifer, cambisol	Management (cutting)	National

C2- Forest experiments

Forests								
1010010	Site	System	Cntry	Exp.	Age	Climate	Soil	Partner
N deposition	Klosterhede	Conifer	DK	N deposition	12	Atlantic	Podzol	KVL/Gundersen
	Klausenleopoldsdorf	Decidious	AU	N deposition	8	Continental	Dystric cambisol	BFW/Zechmeister
	Gårdsjøn	Conifer	SE	N deposition	12	Atlantic	Podzol	IVL/Moldan
	Alptal	Conifer	SC	N deposition	10	Alpine	Gleysol	WSL/Schleppi
Climate	Achenkirchen	Conifer	AU	Temperature	6	Continental	Cambisol	BFW/Zechmeister
	Tolfa	Mediterran ean forest	IT	+/- water	4	Mediterranean	Clay-loam	IBIMET-CNR/Miglietta
	Herdade de Mitra, Evora	Evergreen oak	PO	+/- water	4	Mediterranean	lixisoils/st acnic	ISA/Pereira
	EUROFACE	Poplar	IT	+CO2, +N	5	Mediterranean	?	UNITUS/Scarzia- Mugnozza
Land use	Vestskoven	Decidious and conifer	DK	Afforest. and Wet/dry	1-200	Atlantic	Sandy Ioam	KVL/Gundersen
Management	Grevindeskov	Decidious and conifer	DK	Drainage	42	Atlantic	Sandy Ioam	KVL/Gundersen
	Gottåsa	Conifer	SE	Drainage of peatland	1	Atlantic	Organic	Gothenburg University/Klemmetson
	Höglwald	Conifer	GE	Clearcut, selective cutting		Continental		IMK-IFU/Butterbach

Manipulations

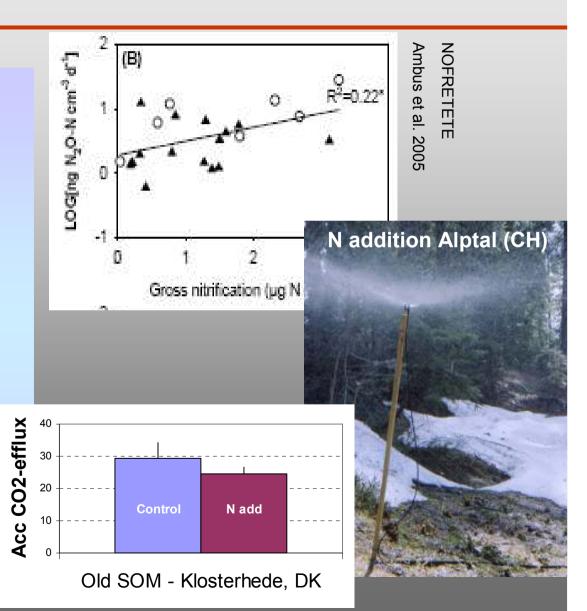
(established in former EU or national projects)

- Chronic N addition (AT, CH, DK, SE), partly NITREX/CNTER sites
- Increased temperature (AT), NOFRETETE site
- Drought and precipitation increase (IT,PT), MIND sites
- Afforestation chronosequences (DK), AFFOREST sites
- Drainage, wet/dry gradients (SE, DK)
- Clear-cut at high N deposition (DE)

Impact of N addition on GHG

N₂O:

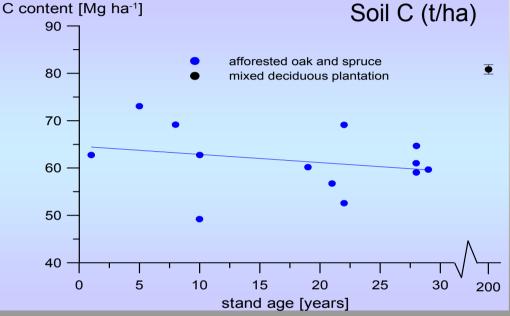
- Increased emission with increased N indicated empirically.
- In NEU verification in long-term manipulations


CH₄:

• Decreased consumption indicated empirically.

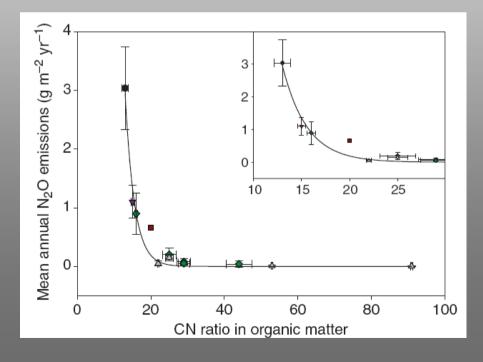
• In NEU - verification in long-term manipulations

CO₂:


- Some observations of decreased respiration
- In NEU more documentations

Former arable land

- C accumulation, but not always
- More N₂O emission indicated
- Less CH₄ consumption indicated



Wet forest soils

- The wet c. 10% may be as important for N_2O and CH_4 as the 90% dry
- N enrichment may increase N₂O loss

2.2 – arable ecosystems

Agriculture and GHG

- key problems and questions

- fluxes of N2O from agro-ecosystems across Europe
- management tool to constrain emissions of GHGs
- spatial and temporal heterogeneity timing, events and hot spots

Knowledge gaps arable

- Management systems that reduce net GHG emissions
- Better understanding of environmental controls to help with modelling
- Continuous measurements of N₂O improved flux estimates
- Emission factors
- Indirect losses of N₂O (drainage)

C2 - Arable experiments

Site	Climate, ecosystem, soil	Treatments	Network
Turew, PL	Continental Arable land, gleysol	Grassland conversion	National
Belgium, BE	Atlantic Arable land, Loam	Conv. vs zero input	National
Foulum, DK	Atlantic Grass/arable, sandy	Conv., org. farm and tillage	National
Tulloch, UK	Atlantic, Grass/arable rotation, podzol	Organic rotation	National
Madrid, ES	Mediterranean, Arable/ horticulture, limestone	Water and N Inputs	National
Pianosa, IT	Mediterranean, Agriculture – Macchia, limestone	LUC, abandonment	National
Zimbabwe, ZI	Semi arid tropical, Chrono, sand	Regional transect	INCO
Danube, UKR	Cont. Arable land, gleysol	LUC	INCO
GEFOS, SE	Atlantic, Arable land on drained soil	Draining of peat	National

NEU-C2 - Proposed arable experiments

Arable								
	Site	System	Cntry	Exp.	Age	Climate	Soil	Partner
Cultivation	Turew	Arable land	PL	Conversion to grassland	1	Continental	Gleysol	AUP/Chojnicki (ZALF/Sommer)
	Belgium	Convention al vs zero	Be	Conventional vs. no input	??	Atlantic	??	GeU/Van Kleemput
	Foulum	Arable and grassland	DK	Conv. & org. farming - tillage practices	8	Atlantic	Loamy sand	DIAS/Olesen
Intensification	Tulloch	Grass/arab le rotation	UK	Arable/grass rotation	13	Atlantic	Podzol (Sandy	SAC/Rees
	Madrid	Arable/ horticulture	ES	Irrigation and manure N Inputs		Mediterranean	??	Vallejo
	Pianosa	Agriculture – Macchia	IT	LU change / land abandonnem	10	Mediterranean	Limestone	SUN/Cotrufo
Drainage	GEFOS	Arable land on drained soil	SE	Draining of old peatland	1	Atlantic	Organic soil	GoU/Klemmetson

key manipulations

- Nitrogen/manure management
- Cultivation
- Crop sequences
- Drainage/irrigation
- Land use change/abandonment
- Chronosequences

Results from previous projects

- Management plays a major role in influencing the magnitude and timing of GHG emissions
- There is a major temporal and spatial (plot scalecontinental scale & event-annual) variability
- C and N cycles interact with non-CO₂ GHGs
- Hot spots in time and space

Examples of manipulations

Sec.20

Italy (SUN)
Scotland (SAC)
Zimbabwe UoZim

drainage/irrigation

2.3 - Shrublands

Shrublands – knowledge gaps

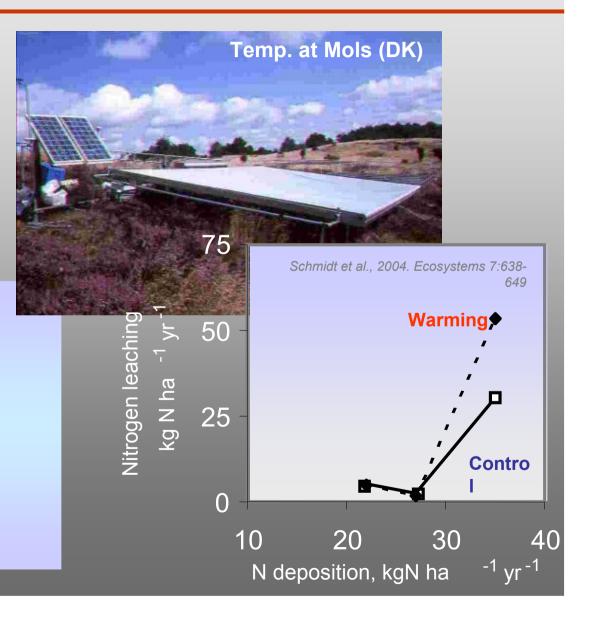
- impact of climate changes (Temp., CO2, precipitation)
- long-term impact of N deposition and interactions with N status and other nutrients
- effects of LUC and draining
- effect of species composition on C, N and GHG exchange.

C2 - shrubland/wetland experiments

Site	Climate, ecosystem, soil	Treatments	Network
Whim, UK	Atlantic, Calluna heath bog, peat	N deposition (N forms; wet/dry NH _x /NO _y , PK)	National
Brandbjerg, DK	Atlantic, Grassland/shrubland, sandy podzol	Climate & CO ₂	National
Stordalen, SE	Subarctic, mire, peat	CNP & N depos. vs CH_4	C-Europe, NECC
Fäjemyren, SE	N. temperate, mire, peat	CNP & N depos. vs CH_4	INSTIGATE, NECC
Mols, DK	Atlantic, calluna shrub & grass, sandy podzol	Climate	VULCAN, CLIMOOR
Männikjärve, EE	Atlantic, bog, peat	NP addition	National
Clocaenog, UK	Atlantic, Calluna heathland, Peaty podzol	Climate	VULCAN, CLIMOOR
Garraf, ES	Mediterranean shrubland, Calc. Cambisol	Climate	VULCAN, CLIMOOR
Oldebroek, NL	Atlantic, calluna shrubland, Podzol	Climate	VULCAN, CLIMOOR

NEU-C2 - Proposed shrubland/wetland experiments

Shrubland								
	Site	System	Cntry	Exp.	Age	Climate	Soil	Partner
N-deposition and	Whim	heath/acid bog	UK	N deposition	2	Atlantic	sandy podzol to	CEH/Shepard
	Brandbjerg	Grassland/ shrubland	DK	CO2+Temp. +H2O	1	Atlantic	Sandy podzol	RISOE/Beier
	Sweden	Temp. and subarc. mires	SE	N and P vs CH4	1	Subarctic & Temperate	Histosols	Lund&ANS/Christense n
Climate	Mols	Shrub/gras s	DK	Temp. & H2O	7	Atlantic	Sandy podzol	RISOE/Beier
	Clocaenog	Moorland	UK	Temp. & drought	7	Atlantic	peaty podzol	CEH/Emmett
	Garraf	Med. shrubland	ES	Temp. & drought	7	Mediterranean	Calcareao us	CREAF/Penuelas
	Oldebroek	Shrubland	NL	Temp. & H2O		Atlantic	Sandy podzol	UA/Tietema
Land use and management	Pianosa (Task 2.2)	Agriculture – Macchia	IT	Land use change / land	10	Mediterranean	Limestone	SUN/Cotrufo
	Rzecin/Demmin (Task 2.4)	grassland / moorland	PO	Draining/floo ding	1	Continental	Histosol	AUP/Chojnicki (ZALF/Sommer)
	Gottåsa (Task 2.2)	Conifer	SE	Drainage of peatland	1	Atlantic	Organic	GoU/Klemmetson


Manipulations

(established in former EU or national projects)

- N deposition (amount and N form) (UK, SE) National
- N and P interaction (SE) national
- Temp. and drought change (DK, NL, SP, UK (HU, IT)), VULCAN/CLIMOOR sites
- CO2, temp. and drought (individual and combined treatments (DK) – CLIMAITE
- Land use change (IT) with 4.2
- Draining of wetlands (SE, PO) with 4.1 & 4.2)

Impact of T and drought on N leaching & GHG exchange

N₂O and CH4:

- No effect few numbers
- Drought at wet sites may be important
- In NEU annual budget

N leaching:

- N-status dependent
 - high N = increased risk

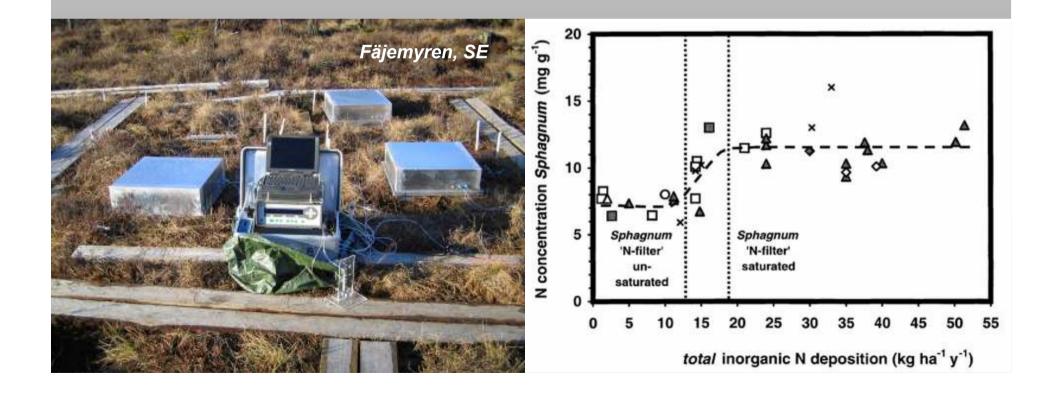
Climate change (CO2, T and H2O) and GHG exchange

N₂O:

- Nothing.
- In NEU annual budgets

CH₄:

- Nothing
- In NEU budgets



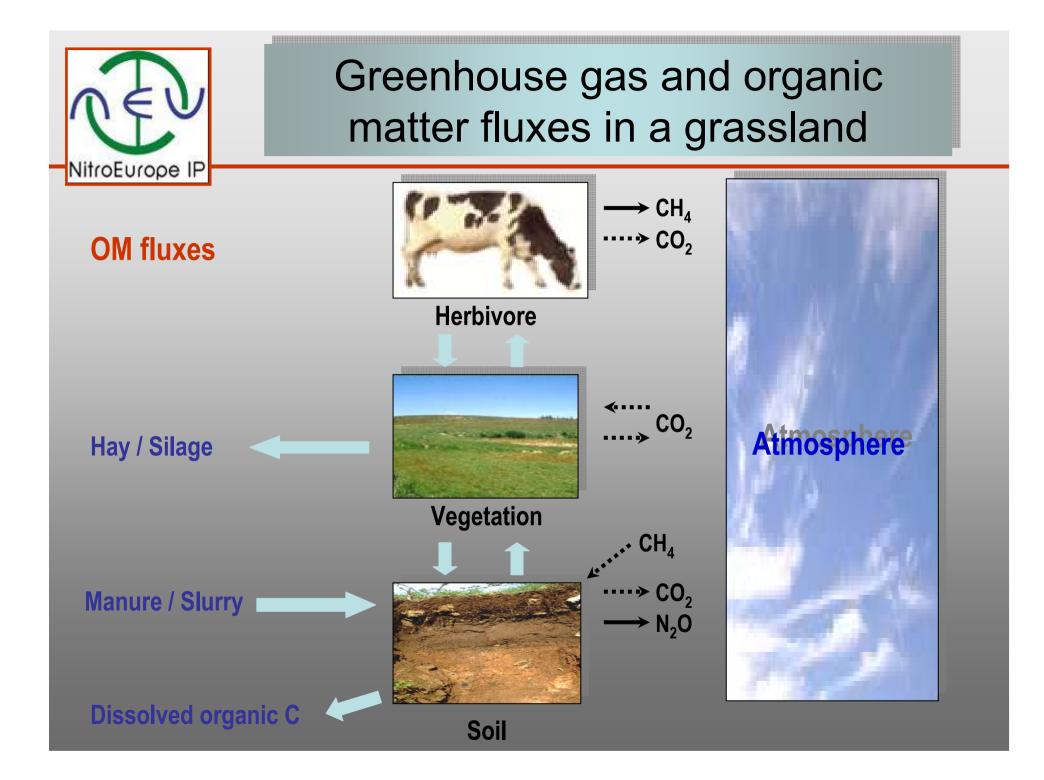
N+P addition and N form

- Increased N = increased N status = growth, N loss, species change
- Effect on CH4 and N2O ????

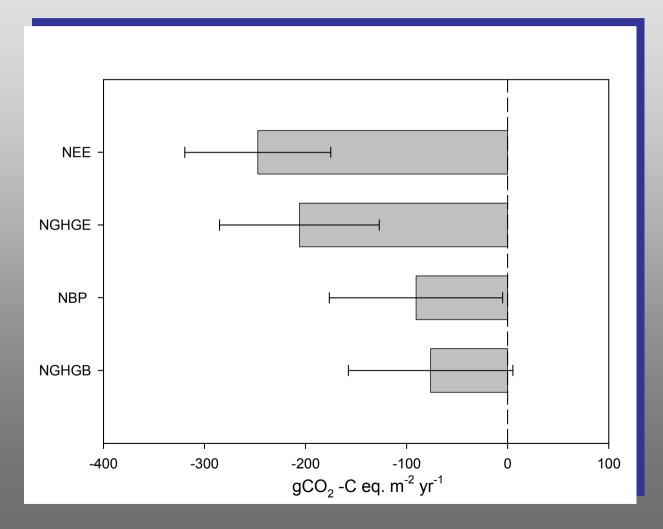
C2 -Manipulation Experiments Shrubland ecosystems

- Experimental Networks and projects in shrubland ecosystems
 - -Vulcan & Climoor
 - -Graminae
 - -Climaite
- Key focus up til now
 - -Carbon storage
 - -Species change
 - -N leaching
- Key findings with respect to N and GHG
 - N leaching depend on N status
 - C and N respond in asynchrony
- Key questions today
 - -Carbon storage
 - -Species change
 - -Seasonality

2.4 - Grasslands


Grasslands - knowledge gaps

- Elevated CO₂ and climate change impact
- Long term effect of N deposition on nutrient poor grasslands
- Effect of draining/flooding in wet grasslands
- Effect of abandonment or extensive use on previously managed grasslands
- When possible need to integrate methane emission from enteric fermentation by herbivores in the balance per unit land area


C2 - grassland experiments

Site	Climate, ecosystem, soil	Treatments	Network
Crichton, UK	Atlantic, grassland, clay loam	N input	National
Theix, FR	Medit., Grassland/Shrub, brown soil	Climate & CO ₂	National
Gödöllő, HU	Continental, Grassland, Sandy	Management, CO2 and N input	GREENGRASS
Plynlimon, UK	Atlantic, Acid grassland, peaty podzol	Temperature and N deposition	National
Rzecin/Demmin, PO	Atlantic, Acid grassland, peaty podzol	Draining/flooding	National
Stordalen & Fäjemyren, SE	Subarc. & temp., mire, peat	CNP & N depos.	C-EUROPE, NECC
Nafferton, UK (Chrono)	Atlantic, Grassland/riparean	Land use chronosequence	National

GHG balance of GreenGrass sites

Manipulation

- Climate change
 - CO₂, temperature, rainfall (Theix/Clermont)
 - CO₂, N supply (Gödöllö)
 - Temperature, N deposition (Plynlimon)
- N input/deposition
 - Crichton
 - Stordalen
- Draining/flooding (Rzeckin, Demmin)
- Land use change chronosequence (UK)

Methodological issues

- Spatial variability in grazed grasslands
- Annual balance
- Methane emission/oxidation from soils
- Need to determine key soil parameters (eg soil pore water filling...)
- Added value for modelling:
 - Detailed campaigns ?
 - Or rough annual balance?

C1 and C2 - Protocol

Common C1-C2 protocol

Remember – C2 look for relative change !!!!! We should get as close as possible to a closed N budget

Spatial variation

- Spatial mapping
- Moving chambers
- Look for surrogates (e.g. moisture, vegetation)
- Concentrate on sites with obvious problems
- must be adressed in protocol

Sites

- Different sites may have different focusses or key points
- Site age may be important for response (how long into treatment)
- Split sites depending on modelling or metanalysis requirements

C1 and C2 - Protocol

.....common protocol

Methodology

- Standard protocols may not work for all existing sites (we cannot chane design and installation)

- Intercalibration of different methods
- some measurements may need to be measured by experts touring all sites.
- Task force to propose a protocol (C1, C2 and C3)

•TASK FORCE (Repr. C1, C2 and C3)

1 – Set science questions (OK)

•2 – rough list of measurements (requirements relating to science questions and model requirements) (this meeting + task force)
 •3 – specific protocol (task force) to be circulated and commented (by all)

Time – soon or after approval of 15 page ?

C2 – Knowledge gaps

Forest

long-term impact of N deposition
impact of climate changes
effect of afforestation/abandonment on N rich arable land
effect of draining/flooding in wet forest soils.

Shrub

 Impact of climate changes
 Long-term impact of N deposition and interactions with N status and other nutrients

•Effects of LUC and draining

•Effect of species composition on C, N and GHG exchange.

Arable

Cont. meas. of N₂O - improved flux estimates
Understand env. controls - modelling
Management systems to reduce GHG
Indirect losses of N₂O (drainage)
Emission factors
Recycling of NO_x by plants

Grassland

•CO₂ and climate change impact
•N deposition on nutrient poor grasslands
•Draining/flooding in wet grasslands
•Abandonment or extensive use on previously managed grasslands

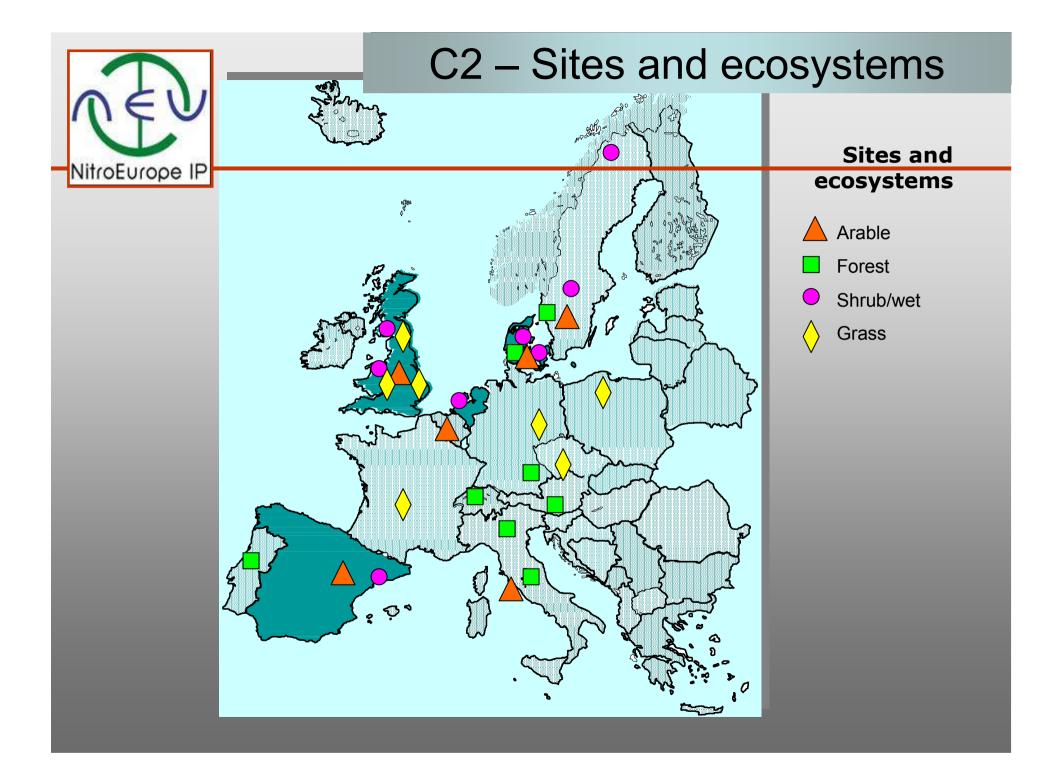
C2 - Manipulation Experiments

Challenges

- Coverage of European conditions (ecosystem types and drivers)

- Manipulations are different (methods, replicates, focus etc.)

- Many groups (Economy, logitstics and coordination)


C2 - Next step

Agree common workplan and protocol

 "Harmonize" methodologies (e.g. intercalibration – also with C1)

Collect existing data

Start measurements and modelling (C3)

